Saturday, 15 July 2017

อนุกรมเวลา พยากรณ์ รุ่น ดังกล่าว ตามที่ เคลื่อนไหว ค่าเฉลี่ย


ค่าเฉลี่ยเคลื่อนที่โดยใช้ชุดข้อมูลแบบเดิมค่าเฉลี่ยหมายถึงค่าสถิติแรกที่เป็นประโยชน์และมีประโยชน์มากที่สุดแห่งหนึ่งในการคำนวณ เมื่อข้อมูลอยู่ในรูปแบบของชุดเวลาซีรี่ส์หมายถึงการวัดที่เป็นประโยชน์ แต่ไม่ได้สะท้อนถึงลักษณะพลวัตของข้อมูล ค่าเฉลี่ยที่คำนวณจากช่วงสั้น ๆ ก่อนหน้าช่วงเวลาปัจจุบันหรือตรงกลางของช่วงเวลาปัจจุบันมักมีประโยชน์มากกว่า เนื่องจากค่าเฉลี่ยดังกล่าวจะแปรผันหรือเคลื่อนย้ายเนื่องจากระยะเวลาปัจจุบันจะเคลื่อนที่จากเวลา t 2, t 3 เป็นต้นเรียกว่าค่าเฉลี่ยเคลื่อนที่ (Mas) ค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ยคือ (โดยปกติ) ค่าเฉลี่ยที่ไม่มีการถัวเฉลี่ยของค่าก่อนหน้า k ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบเลขยกกำลังเป็นหลักเหมือนกับค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ย แต่มีส่วนร่วมกับค่าเฉลี่ยที่ถ่วงน้ำหนักโดยความใกล้ชิดกับเวลาปัจจุบัน เนื่องจากไม่มีตัวอักษร แต่เป็นชุดค่าเฉลี่ยเคลื่อนที่ทั้งหมดสำหรับชุดใดก็ตามชุดของ Mas สามารถถูกจัดวางลงบนกราฟวิเคราะห์เป็นชุดและใช้ในการสร้างแบบจำลองและการคาดการณ์ ช่วงของแบบจำลองสามารถสร้างโดยใช้ค่าเฉลี่ยเคลื่อนที่และเป็นที่รู้จักในรูปแบบ MA ถ้าโมเดลดังกล่าวรวมกับโมเดลอัตถิภาวนิยม (AR) รูปแบบคอมโพสิตที่เป็นที่รู้จักกันในชื่อ ARMA หรือ ARIMA (แบบบูรณาการ) ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายเนื่องจากชุดเวลาสามารถถือได้ว่าเป็นชุดของค่า, t 1,2,3,4, n ค่าเฉลี่ยของค่าเหล่านี้สามารถคำนวณได้ ถ้าเราคิดว่า n มีขนาดใหญ่มากและเราเลือกจำนวนเต็ม k ซึ่งน้อยกว่า n เราสามารถคำนวณชุดค่าเฉลี่ยบล็อกหรือค่าเฉลี่ยเคลื่อนที่ที่สั้น ๆ (ของคำสั่ง k): แต่ละค่าจะแสดงค่าเฉลี่ยของค่าข้อมูลในช่วงเวลาสังเกตการณ์ k โปรดทราบว่า MA ที่เป็นไปได้ครั้งแรกของคำสั่ง k GT0 คือสำหรับ t k โดยทั่วไปเราสามารถลด subscript พิเศษในนิพจน์ด้านบนและเขียนได้: ค่านี้ระบุว่าค่าเฉลี่ยที่เวลา t เป็นค่าเฉลี่ยที่ง่ายของค่าที่สังเกตได้ ณ เวลา t และขั้นตอน k-1 ก่อนหน้า ถ้าใช้น้ำหนักที่ลดการมีส่วนร่วมของการสังเกตที่ไกลออกไปในเวลาค่าเฉลี่ยเคลื่อนที่จะกล่าวได้ว่าเป็นแบบเรียบ ค่าเฉลี่ยเคลื่อนที่มักใช้เป็นรูปแบบของการคาดการณ์โดยที่ค่าประมาณสำหรับชุดในเวลา t 1, S t1 ถูกนำมาเป็น MA สำหรับระยะเวลาถึงและรวมถึงเวลา t เช่น. การประมาณในปัจจุบันคำนวณจากค่าเฉลี่ยที่บันทึกไว้ก่อนหน้านี้และรวมถึงวันวาน (สำหรับข้อมูลรายวัน) ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายสามารถเห็นได้ว่าเป็นรูปแบบการทำให้เรียบ ในตัวอย่างที่แสดงด้านล่างชุดข้อมูลมลพิษทางอากาศที่แสดงในบทนำสู่หัวข้อนี้ได้รับการเพิ่มขึ้นโดยเส้นค่าเฉลี่ยเคลื่อนที่ 7 วัน (MA) ซึ่งแสดงเป็นสีแดง ที่สามารถมองเห็นได้สาย MA ช่วยให้จุดสูงสุดและร่องในข้อมูลเป็นไปอย่างราบรื่นและเป็นประโยชน์ในการระบุแนวโน้ม สูตรคำนวณการคำนวณล่วงหน้าหมายถึงจุดข้อมูล k -1 จุดแรกไม่มีค่า MA แต่หลังจากนั้นการคำนวณจะขยายไปยังจุดข้อมูลสุดท้ายในชุดข้อมูล ค่าเฉลี่ยของวัน PM10 แหล่งที่มาของ Greenwich: London Air Quality Network, londonair. org. uk เหตุผลหนึ่งในการคำนวณค่าเฉลี่ยเคลื่อนที่แบบง่ายๆในลักษณะที่อธิบายไว้คือค่าที่คำนวณได้สำหรับช่วงเวลาทั้งหมดตั้งแต่เวลา tk ขึ้นไปจนถึงปัจจุบันและ เป็นวัดใหม่ที่ได้รับสำหรับเวลา t 1, MA สำหรับเวลา t 1 สามารถเพิ่มไปยังชุดที่คำนวณแล้ว นี่เป็นขั้นตอนง่ายๆสำหรับชุดข้อมูลแบบไดนามิก อย่างไรก็ตามมีบางประเด็นเกี่ยวกับแนวทางนี้ มีเหตุผลที่จะยืนยันว่าค่าเฉลี่ยในช่วง 3 ช่วงท้าย ๆ ควรจะอยู่ที่เวลา t -1 ไม่ใช่เวลา t และสำหรับ MA มากกว่าจำนวนคู่ของระยะเวลาบางทีมันควรจะอยู่ที่จุดกึ่งกลางระหว่างสองช่วงเวลา วิธีแก้ปัญหานี้คือการใช้การคำนวณ MA ซึ่งอยู่ตรงกลางซึ่ง MA ในเวลา t เป็นค่าเฉลี่ยของชุดสมมาตรของค่ารอบ t แม้จะมีประโยชน์อย่างเห็นได้ชัด แต่วิธีนี้ใช้ไม่ได้โดยทั่วไปเนื่องจากต้องการข้อมูลที่พร้อมใช้งานสำหรับเหตุการณ์ในอนาคตซึ่งอาจจะไม่ใช่กรณีนี้ ในกรณีที่การวิเคราะห์ทั้งหมดเป็นชุดที่มีอยู่การใช้ Mas ไว้ตรงกลางอาจเป็นที่นิยมกว่า ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายอาจถือได้ว่าเป็นรูปแบบหนึ่งของการปรับให้เรียบลบองค์ประกอบความถี่สูงบางส่วนของชุดเวลาและเน้นแนวโน้ม (แต่ไม่ลบ) ในลักษณะเดียวกันกับแนวคิดทั่วไปของการกรองแบบดิจิทัล แท้จริงค่าเฉลี่ยเคลื่อนที่คือรูปแบบของตัวกรองเชิงเส้น คุณสามารถใช้การคำนวณค่าเฉลี่ยเคลื่อนที่เป็นชุดที่ได้รับการปรับให้เรียบขึ้นแล้วเช่นการทำให้เรียบหรือกรองชุดที่เรียบขึ้นไปแล้ว ตัวอย่างเช่นมีค่าเฉลี่ยเคลื่อนที่ของลำดับที่ 2 เราสามารถพิจารณาว่าคำนวณโดยใช้น้ำหนักดังนั้น MA ที่ x 2 0.5 x 1 0.5 x 2 ในทำนองเดียวกัน MA ที่ x 3 0.5 x 2 0.5 x 3 ถ้าเรา เราใช้ 0.5 x 2 0.5 x 3 0.5 (0.5 x 1 0.5 x 2) 0.5 (0.5 x 2 0.5 x 3) 0.25 x 1 0.5 x 2 0.25 x 3 เช่นการกรองแบบ 2 ขั้นตอน กระบวนการ (หรือ convolution) ได้สร้างค่าเฉลี่ยเคลื่อนที่แบบสมมาตรที่มีการถ่วงน้ำหนักที่มีการเปลี่ยนแปลงโดยมีน้ำหนัก หลาย convolutions สามารถผลิตค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักค่อนข้างซับซ้อนซึ่งบางส่วนมีการใช้งานเฉพาะในสาขาพิเศษเช่นในการคำนวณการประกันชีวิต ค่าเฉลี่ยเคลื่อนที่สามารถใช้ในการลบเอฟเฟ็กต์เป็นระยะ ๆ หากคำนวณด้วยระยะเวลาเป็นระยะ ๆ ตามที่ทราบ ตัวอย่างเช่นเมื่อมีข้อมูลรายเดือนข้อมูลตามฤดูกาลสามารถเปลี่ยนแปลงได้โดยการใช้ค่าเฉลี่ยเคลื่อนที่ 12 เดือนที่สมมาตรกับทุกเดือนที่มีการถ่วงน้ำหนักอย่างเท่าเทียมกันยกเว้นกรณีที่ 1 และครั้งสุดท้ายที่มีการถ่วงน้ำหนักด้วย 12 เนื่องจากมี เป็นเวลา 13 เดือนในรูปแบบสมมาตร (ปัจจุบัน, t. - 6 เดือน) ทั้งหมดถูกแบ่งโดย 12 ขั้นตอนที่คล้ายกันสามารถนำมาใช้สำหรับระยะเวลาที่กำหนดไว้อย่างชัดเจน ค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนัก (Expedential Weighted Moving Average - EWMA) โดยใช้สูตรค่าเฉลี่ยเคลื่อนที่แบบง่ายๆ: การสังเกตทั้งหมดมีการถ่วงน้ำหนักอย่างเท่าเทียมกัน ถ้าเราเรียกว่าน้ำหนักเท่ากันนี้อัลฟา t แต่ละ k น้ำหนักจะเท่ากับ 1 k ดังนั้นผลรวมของน้ำหนักจะเป็น 1 และสูตรจะเป็น: เราได้เห็นแล้วว่าการใช้งานหลายขั้นตอนนี้ส่งผลให้น้ำหนักที่แตกต่างกัน ด้วยค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบยกกำลังให้ความสำคัญกับค่าเฉลี่ยจากการสังเกตที่ถูกลบออกไปในเวลามากขึ้นจะลดลงด้วยเหตุนี้จึงเน้นเหตุการณ์ที่เกิดขึ้นเมื่อเร็ว ๆ นี้ โดยทั่วไปจะมีการปรับค่าพารามิเตอร์การให้ราบเรียบ alpha lt1 ll1 และสูตรที่ได้รับการแก้ไขไปเป็น: รูปแบบสมมาตรของสูตรนี้จะมีรูปแบบดังนี้: ถ้าน้ำหนักในรูปแบบสมมาตรถูกเลือกเป็นเงื่อนไขของข้อกำหนดของการขยายตัวแบบทวินาม (1212) 2q พวกเขาจะรวมกันเป็น 1 และเมื่อ q กลายเป็นขนาดใหญ่จะใกล้เคียงกับการแจกแจงแบบปกติ นี่คือรูปแบบของการถ่วงน้ำหนักของเคอร์เนลโดยมีฟังก์ชัน Binomial ทำหน้าที่เป็นฟังก์ชันเคอร์เนล การแกว่งสองขั้นตอนที่อธิบายไว้ในหมวดย่อยก่อนหน้านี้คือการจัดเรียงนี้อย่างแม่นยำด้วย q 1 ซึ่งให้น้ำหนัก ในการทำให้เรียบเรียบขึ้นจำเป็นต้องใช้ชุดของน้ำหนักที่รวมกันเป็น 1 และลดขนาดทางเรขาคณิต น้ำหนักที่ใช้มีรูปแบบดังนี้: เพื่อแสดงให้เห็นว่าน้ำหนักเหล่านี้รวมกันเป็น 1 ให้พิจารณาการขยายตัวเป็น 1 เป็นชุด เราสามารถเขียนและขยายนิพจน์ในวงเล็บโดยใช้สูตรทวินาม (1- x) p. โดยที่ x (1-) และ p -1 ซึ่งจะให้: ค่านี้จะให้รูปแบบของค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักของแบบฟอร์ม: ผลรวมนี้สามารถเขียนเป็นความสัมพันธ์ที่เกิดขึ้นใหม่ซึ่งช่วยลดความซับซ้อนในการคำนวณและหลีกเลี่ยงปัญหาที่ระบบการถ่วงน้ำหนัก ควรมีความยาวไม่ จำกัด สำหรับน้ำหนักที่จะรวมกันเป็น 1 (สำหรับค่าอัลฟ่าเล็กน้อยนี่ไม่ใช่กรณีปกติ) สัญกรณ์ที่ใช้โดยผู้เขียนที่แตกต่างกันจะแตกต่างกันออกไป บางคนใช้ตัวอักษร S เพื่อระบุว่าสูตรนั้นเป็นตัวแปรที่ราบรื่นและเขียนว่า: ในขณะที่ทฤษฎีวรรณคดีควบคุมมักใช้ Z แทน S สำหรับค่าที่ถ่วงน้ำหนักหรือเรียบเรียงเป็นพหุคูณ (ดูตัวอย่างเช่น Lucas and Saccucci, 1990, LUC1 , และเว็บไซต์ NIST สำหรับรายละเอียดเพิ่มเติมและตัวอย่างการทำงาน) สูตรที่อ้างถึงข้างต้นมาจากผลงานของ Roberts (1959, ROB1) แต่ Hunter (1986, HUN1) ใช้การแสดงออกของรูปแบบ: ซึ่งอาจเหมาะสมกว่าสำหรับการใช้ในขั้นตอนการควบคุมบางอย่าง ด้วยค่า alpha 1 ค่าประมาณเฉลี่ยคือค่าที่วัดได้ (หรือมูลค่าของรายการข้อมูลก่อนหน้า) ด้วยค่าประมาณ 0.5 ค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ของการวัดในปัจจุบันและก่อนหน้า ในรูปแบบการคาดการณ์ S t. มักใช้เป็นประมาณการหรือค่าพยากรณ์ในช่วงเวลาต่อไปนั่นคือค่าประมาณสำหรับ x ณ เวลา t ดังนั้นเราจึงได้แสดงให้เห็นว่าค่าพยากรณ์ที่ t 1 เป็นค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนัก บวกกับส่วนประกอบที่แสดงถึงข้อผิดพลาดในการทำนายถ่วงน้ำหนักเอปไซลอน เวลา t สมมติว่ามีชุดเวลาและต้องมีการคาดการณ์ค่าอัลฟาต้อง นี้สามารถประมาณจากข้อมูลที่มีอยู่โดยการประเมินผลรวมของข้อผิดพลาดการทำนายกำลังสองได้รับกับค่าที่แตกต่างของ alpha สำหรับแต่ละ t 2,3 การตั้งค่าการประมาณครั้งแรกเป็นค่าข้อมูลที่สังเกตครั้งแรก x 1. ในแอ็พพลิเคชันควบคุมค่าของอัลฟามีความสำคัญในการใช้ในการกำหนดขีด จำกัด การควบคุมด้านบนและด้านล่างและมีผลต่อระยะเวลาในการทำงานโดยเฉลี่ย (ARL) ก่อนที่ข้อ จำกัด ในการควบคุมเหล่านี้จะเสีย (ภายใต้สมมติฐานว่าชุดข้อมูลเวลาเป็นชุดของตัวแปรอิสระแบบสุ่มที่แจกแจงแบบเดียวกันโดยมีความแปรปรวนร่วมกัน) ภายใต้สถานการณ์เช่นนี้ความแปรปรวนของสถิติการควบคุม: คือ (ลูคัสและ Saccucci, 1990): ขีด จำกัด ของการควบคุมมักจะตั้งค่าเป็นทวีคูณที่คงที่ของความแปรปรวนของการไม่ทำงานนี้เช่น - ค่าเบี่ยงเบนมาตรฐาน 3 เท่า ถ้าตัวอย่างเช่น alpha 0.25 และข้อมูลที่ได้รับการตรวจสอบจะถือว่ามีการแจกแจงแบบปกติ N (0,1) เมื่ออยู่ในการควบคุมขีด จำกัด ของการควบคุมจะเป็น - 1.134 และกระบวนการนี้จะถึงหนึ่งหรือขีด จำกัด อื่น ๆ ใน 500 ขั้นตอน โดยเฉลี่ย. Lucas และ Saccucci (1990 LUC1) ได้รับค่า ARLs สำหรับค่า alpha และภายใต้สมมติฐานต่างๆโดยใช้กระบวนการ Markov Chain พวกเขาจัดทำเป็นตารางผลลัพธ์รวมถึงการให้ ARLs เมื่อค่าเฉลี่ยของกระบวนการควบคุมได้รับการเปลี่ยนแปลงโดยค่าเบี่ยงเบนมาตรฐานหลายค่าหลายค่า ตัวอย่างเช่นเมื่อมีการเปลี่ยนแปลง 0.5 กับ alpha 0.25 ARL น้อยกว่า 50 ขั้นตอนเวลา วิธีการที่อธิบายข้างต้นเป็นที่รู้จักกันในชื่อเดียวเรียบ เป็นขั้นตอนที่ใช้ครั้งเดียวกับชุดเวลาและจากนั้นการวิเคราะห์หรือควบคุมกระบวนการจะดำเนินการในชุดข้อมูลที่เกิดเรียบ หากชุดข้อมูลมีส่วนประกอบของเทรนด์ตามฤดูกาลหรืออาจใช้การทำให้เรียบแบบทวีคูณแบบสองขั้นตอนหรือสามขั้นตอนเพื่อใช้เป็นแนวทางในการลบผลกระทบเหล่านี้ (ดูเพิ่มเติมที่ส่วนการพยากรณ์อากาศด้านล่างและตัวอย่างการทำงานของ NIST) CHA1 Chatfield C (1975) การวิเคราะห์ไทม์ซีรี่ส์: ทฤษฎีและการปฏิบัติ แชปแมนและฮอลล์, ลอนดอน HUN1 เธ่อเจเอส (1986) ค่าเฉลี่ยถ่วงน้ำหนักแบบเลขยกกำลัง J ของ Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) แผนการควบคุมค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบทวีคูณ: คุณสมบัติและการปรับปรุง Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) การควบคุมแผนภูมิการทดสอบขึ้นอยู่กับค่าเฉลี่ยเคลื่อนที่ทางเรขาคณิต Technometrics, 1, 239-250Time ซีรีส์วิธีการแบบอนุกรมเวลาเป็นเทคนิคทางสถิติที่ใช้ประโยชน์จากข้อมูลทางประวัติศาสตร์ที่สะสมอยู่ในช่วงเวลาหนึ่ง วิธีการแบบอนุกรมเวลาสมมติว่าสิ่งที่เกิดขึ้นในอดีตจะยังคงเกิดขึ้นต่อไปในอนาคต เป็นชุดเวลาชื่อแนะนำวิธีการเหล่านี้เกี่ยวข้องกับการคาดการณ์เพียงหนึ่งปัจจัยเวลา ซึ่งรวมถึงค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยที่ชี้แจงและเส้นแนวโน้มเชิงเส้นและเป็นหนึ่งในวิธีที่ได้รับความนิยมมากที่สุดสำหรับการคาดการณ์ในระยะสั้นระหว่าง บริษัท ผู้ให้บริการและ บริษัท ผู้ผลิต วิธีการเหล่านี้สมมติว่ารูปแบบทางประวัติศาสตร์ที่ระบุหรือแนวโน้มสำหรับความต้องการในช่วงเวลาที่จะทำซ้ำตัวเอง Moving Average การคาดการณ์ชุดข้อมูลอนุกรมเวลาอาจทำได้เพียงง่ายๆโดยใช้ความต้องการในช่วงเวลาปัจจุบันเพื่อพยากรณ์ความต้องการในช่วงต่อไป นี่คือบางครั้งเรียกว่าการคาดเดาที่ไร้เดียงสาหรือใช้งานง่าย 4 ตัวอย่างเช่นถ้าความต้องการเป็น 100 หน่วยในสัปดาห์นี้การคาดการณ์สำหรับความต้องการในสัปดาห์หน้าคือ 100 หน่วยถ้าความต้องการเปลี่ยนเป็น 90 หน่วยแทนแล้วความต้องการสัปดาห์ต่อไปคือ 90 หน่วยและอื่น ๆ วิธีการคาดการณ์ประเภทนี้ไม่ได้คำนึงถึงพฤติกรรมความต้องการในอดีตที่ต้องอาศัยความต้องการในช่วงเวลาปัจจุบัน มันตอบสนองโดยตรงกับปกติการเคลื่อนไหวแบบสุ่มในความต้องการ วิธีเฉลี่ยเคลื่อนที่แบบง่ายใช้ค่าความต้องการหลายค่าในช่วงไม่กี่ปีที่ผ่านมาเพื่อพัฒนาการคาดการณ์ นี้มีแนวโน้มที่จะชุบหรือเรียบออกเพิ่มขึ้นสุ่มและลดลงของการคาดการณ์ที่ใช้เวลาเพียงหนึ่ง ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายมีประโยชน์ในการคาดการณ์ความต้องการที่มีเสถียรภาพและไม่แสดงพฤติกรรมความต้องการที่เด่นชัดเช่นแนวโน้มหรือรูปแบบตามฤดูกาล ค่าเฉลี่ยเคลื่อนที่จะคำนวณเป็นระยะเวลาหนึ่งเช่นสามเดือนหรือห้าเดือนขึ้นอยู่กับระยะเวลาที่นักพยากรณ์ต้องการที่จะราบรื่นข้อมูลความต้องการ ระยะเวลาเฉลี่ยที่ยาวนานขึ้นจะยิ่งนุ่มนวลขึ้น บริษัท เครื่องคิดเลขออฟฟิศออฟฟิศซัพพลายขายและส่งมอบเครื่องใช้สำนักงานไปยัง บริษัท โรงเรียนและหน่วยงานต่างๆภายในรัศมี 50 ไมล์จากคลังสินค้าของ บริษัท ค่าเฉลี่ยคำนวณค่าเฉลี่ยเคลื่อนที่แบบง่ายๆ ธุรกิจจัดหาสำนักงานมีความสามารถในการแข่งขันและความสามารถในการส่งมอบคำสั่งซื้อได้อย่างทันท่วงทีเป็นปัจจัยในการสร้างลูกค้ารายใหม่ ๆ และรักษาความเก่า (สำนักงานมักจะสั่งไม่เมื่อพวกเขาทำงานต่ำในวัสดุสิ้นเปลือง แต่เมื่อพวกเขาหมดสิ้นผลเป็นผลให้พวกเขาต้องการคำสั่งของพวกเขาทันที) ผู้จัดการของ บริษัท ต้องการที่จะมีไดรเวอร์เพียงพอและยานพาหนะพร้อมที่จะส่งมอบคำสั่งซื้อทันทีและ พวกเขามีสต็อคเพียงพอในสต็อก ดังนั้นผู้จัดการต้องการคาดการณ์จำนวนคำสั่งซื้อที่จะเกิดขึ้นในเดือนถัดไป (เช่นคาดการณ์ความต้องการในการจัดส่ง) จากบันทึกคำสั่งซื้อการจัดการได้รวบรวมข้อมูลต่อไปนี้ไว้ในช่วง 10 เดือนที่ผ่านมาซึ่งต้องการคำนวณค่าเฉลี่ยเคลื่อนที่ 3 และ 5 เดือน สมมติว่าเป็นวันสิ้นเดือนตุลาคม การคาดการณ์ที่เกิดจากค่าเฉลี่ยเคลื่อนที่ 3 หรือ 5 เดือนโดยทั่วไปสำหรับเดือนถัดไปตามลำดับซึ่งในกรณีนี้คือเดือนพฤศจิกายน ค่าเฉลี่ยเคลื่อนที่จะคำนวณจากความต้องการคำสั่งซื้อสำหรับงวด 3 เดือนก่อนตามลำดับตามสูตรต่อไปนี้ค่าเฉลี่ยเคลื่อนที่ 5 เดือนคำนวณจากข้อมูลความต้องการ 5 เดือนก่อนหน้าดังนี้ 3- และ 5 เดือน การคาดการณ์ค่าเฉลี่ยเคลื่อนที่สำหรับเดือนทั้งหมดของข้อมูลความต้องการจะแสดงในตารางต่อไปนี้ จริงๆแล้วการคาดการณ์สำหรับเดือนพฤศจิกายนตามความต้องการรายเดือนล่าสุดจะถูกใช้โดยผู้จัดการ อย่างไรก็ตามการคาดการณ์ก่อนหน้านี้สำหรับเดือนก่อน ๆ ช่วยให้เราสามารถเปรียบเทียบการคาดการณ์กับความต้องการที่แท้จริงเพื่อดูว่าวิธีการพยากรณ์ถูกต้องอย่างไรนั่นคือทำได้ดีแค่ไหน ค่าเฉลี่ยทั้งสามและห้าเดือนทั้งสองค่าเฉลี่ยของการคาดการณ์ในตารางด้านบนมีแนวโน้มที่จะทำให้ความแปรปรวนเกิดขึ้นได้ในข้อมูลที่เกิดขึ้นจริง ผลการปรับให้เรียบนี้สามารถสังเกตได้จากตัวเลขต่อไปนี้ซึ่งเป็นข้อมูลเฉลี่ยของ 3 เดือนและ 5 เดือนในกราฟของข้อมูลเดิม: ค่าเฉลี่ยเคลื่อนที่ 5 เดือนในรูปก่อนหน้านี้ช่วยขจัดความผันผวนได้มากกว่า ค่าเฉลี่ยเคลื่อนที่ 3 เดือน อย่างไรก็ตามค่าเฉลี่ยในรอบ 3 เดือนสะท้อนให้เห็นถึงข้อมูลล่าสุดที่มีให้กับผู้จัดการฝ่ายจัดหาสำนักงานมากขึ้น โดยทั่วไปการคาดการณ์โดยใช้ค่าเฉลี่ยเคลื่อนที่ในระยะยาวจะตอบสนองต่อการเปลี่ยนแปลงความต้องการล่าสุดได้ช้ากว่าที่คาดการณ์ไว้โดยใช้ค่าเฉลี่ยเคลื่อนที่ที่สั้นลง ช่วงเวลาที่เพิ่มขึ้นของข้อมูลจะส่งผลต่อความเร็วที่คาดการณ์ไว้ การสร้างจำนวนระยะเวลาที่เหมาะสมเพื่อใช้ในการคาดการณ์โดยเฉลี่ยที่เคลื่อนที่มักต้องการการทดลองใช้และทดสอบข้อผิดพลาดจำนวนมาก ข้อเสียของวิธีเฉลี่ยเคลื่อนที่คือไม่ตอบสนองต่อการเปลี่ยนแปลงที่เกิดขึ้นด้วยเหตุผลเช่นรอบการทำงานและผลตามฤดูกาล ปัจจัยที่ทำให้เกิดการเปลี่ยนแปลงโดยทั่วไปจะถูกเพิกเฉย เป็นวิธีการเชิงกลซึ่งสะท้อนถึงข้อมูลทางประวัติศาสตร์อย่างสม่ำเสมอ อย่างไรก็ตามวิธีเฉลี่ยเคลื่อนที่จะมีข้อดีคือใช้งานง่ายรวดเร็วและไม่แพงนัก โดยทั่วไปวิธีการนี้สามารถให้การคาดการณ์ที่ดีในระยะสั้น แต่ไม่ควรผลักดันให้ไกลเกินไป Weighted Moving Average วิธีถัวเฉลี่ยถ่วงน้ำหนักสามารถปรับเปลี่ยนเพื่อสะท้อนความผันผวนของข้อมูลได้มากขึ้น ในวิธีถัวเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักน้ำหนักจะถูกกำหนดให้กับข้อมูลล่าสุดตามสูตรต่อไปนี้: ข้อมูลความต้องการสำหรับ PM Computer Services (แสดงในตารางสำหรับตัวอย่าง 10.3) ดูเหมือนจะทำตามแนวโน้มเชิงเส้นที่เพิ่มขึ้น บริษัท ต้องการคำนวณเส้นแนวโน้มเชิงเส้นเพื่อดูว่ามีความแม่นยำมากกว่าการคาดการณ์การปรับให้เรียบและชี้แจงที่ได้รับการพัฒนาขึ้นในตัวอย่าง 10.3 และ 10.4 หรือไม่ ค่าที่จำเป็นสำหรับการคำนวณกำลังสองน้อยที่สุดมีดังนี้: ใช้ค่าเหล่านี้พารามิเตอร์สำหรับเส้นแนวโน้มเชิงเส้นคำนวณดังนี้: ดังนั้นสมการเส้นแนวโน้มเส้นคือการคำนวณการคาดการณ์สำหรับรอบระยะเวลา 13 ให้ x 13 ในเส้นตรง เส้นแนวโน้ม: กราฟต่อไปนี้แสดงเส้นแนวโน้มเชิงเส้นเมื่อเทียบกับข้อมูลจริง เส้นแนวโน้มแสดงให้เห็นอย่างใกล้ชิดกับข้อมูลที่เกิดขึ้นจริงนั่นคือเหมาะที่จะเป็นรูปแบบการคาดการณ์ที่ดีสำหรับปัญหานี้ อย่างไรก็ตามข้อเสียของเส้นแนวโน้มคือว่ามันจะไม่ปรับตัวให้เข้ากับการเปลี่ยนแปลงของแนวโน้มเนื่องจากวิธีการคาดการณ์การทำให้ราบเรียบชี้แจงจะเป็นสมมติว่าการคาดการณ์ในอนาคตทั้งหมดจะเป็นไปตามเส้นตรง วิธีนี้ จำกัด การใช้วิธีนี้กับกรอบเวลาที่สั้นกว่าซึ่งคุณสามารถมั่นใจได้ว่าแนวโน้มจะไม่เปลี่ยนแปลง การปรับฤดูกาลเป็นฤดูกาลที่เพิ่มขึ้นและความต้องการลดลง รายการอุปสงค์จำนวนมากแสดงพฤติกรรมตามฤดูกาล ยอดขายเสื้อผ้าเป็นไปตามรูปแบบฤดูกาลประจำปีโดยมีความต้องการเสื้อผ้าอุ่น ๆ เพิ่มขึ้นในช่วงฤดูใบไม้ร่วงและฤดูหนาวและลดลงในช่วงฤดูใบไม้ผลิและฤดูร้อนเนื่องจากความต้องการเสื้อผ้าเพิ่มขึ้น ความต้องการสินค้าปลีกจำนวนมากรวมทั้งของเล่นอุปกรณ์กีฬาเสื้อผ้าเครื่องใช้ไฟฟ้าแฮมตุรกีไวน์และผลไม้เพิ่มขึ้นในช่วงเทศกาลวันหยุด ความต้องการบัตรอวยพรเพิ่มขึ้นควบคู่ไปกับวันพิเศษเช่นวันวาเลนไทน์และวันแม่ รูปแบบตามฤดูกาลอาจเกิดขึ้นได้ทุกเดือนรายสัปดาห์หรือแม้แต่รายวัน ร้านอาหารบางแห่งมีความต้องการสูงกว่าช่วงกลางวันหรือในช่วงสุดสัปดาห์ซึ่งไม่ใช่วันธรรมดา การจราจร - เพราะฉะนั้นการขาย - ที่ห้างสรรพสินค้าหยิบขึ้นมาในวันศุกร์และวันเสาร์ มีหลายวิธีในการสะท้อนรูปแบบตามฤดูกาลในการคาดการณ์ชุดข้อมูลแบบอนุกรม เราจะอธิบายหนึ่งในวิธีที่ง่ายขึ้นโดยใช้ปัจจัยตามฤดูกาล ปัจจัยตามฤดูกาลคือค่าตัวเลขที่คูณด้วยการคาดการณ์ตามปกติเพื่อให้ได้รับการคาดการณ์ตามฤดูกาล วิธีการหนึ่งในการพัฒนาความต้องการปัจจัยตามฤดูกาลคือการแบ่งความต้องการสำหรับแต่ละฤดูกาลตามความต้องการโดยรวมประจำปีตามสูตรต่อไปนี้ปัจจัยฤดูกาลที่เกิดขึ้นระหว่าง 0 ถึง 1.0 เป็นผลส่วนหนึ่งของความต้องการประจำปีทั้งหมดที่กำหนดให้ ในแต่ละฤดูกาล ปัจจัยฤดูกาลเหล่านี้คูณด้วยความต้องการที่คาดการณ์ไว้เป็นประจำทุกปีเพื่อให้ได้ผลตอบแทนที่ปรับตามฤดูกาลในแต่ละฤดูกาล การคำนวณการคาดการณ์ด้วยการปรับฤดูกาลฟาร์ม Wishbone Farm เติบโตขึ้นเพื่อขายไก่งวงให้กับ บริษัท แปรรูปเนื้อสัตว์ตลอดทั้งปี อย่างไรก็ตามในช่วงไตรมาสที่สี่ของปีพฤศจิกาจะมีฤดูกาลสูงสุดในช่วงเดือนตุลาคมถึงธันวาคม Wishbone Farms มีประสบการณ์ความต้องการไก่งวงในช่วง 3 ปีที่ผ่านมาแสดงไว้ในตารางต่อไปนี้เนื่องจากเรามีข้อมูลความต้องการยาวนานถึงสามปีเราจึงสามารถคำนวณหาปัจจัยตามฤดูกาลได้โดยแบ่งความต้องการรายไตรมาสทั้งหมดเป็นเวลาสามปีตามความต้องการทั้งหมดในช่วง 3 ปีที่ผ่านมา : ต่อไปเราต้องการเพิ่มความต้องการที่คาดการณ์ไว้สำหรับปีหน้าในปีพ. ศ. 2543 ตามปัจจัยต่างๆตามฤดูกาลเพื่อให้ได้ความต้องการที่คาดการณ์ไว้สำหรับแต่ละไตรมาส เพื่อให้บรรลุเป้าหมายนี้เราจำเป็นต้องมีการคาดการณ์ความต้องการสำหรับปี 2543 ในกรณีนี้เนื่องจากข้อมูลความต้องการในตารางดูเหมือนจะมีแนวโน้มเพิ่มขึ้นโดยทั่วไปเราคำนวณเส้นแนวโน้มเชิงเส้นเป็นเวลาสามปีของข้อมูลในตารางเพื่อให้ได้ข้อมูลที่หยาบ ประมาณการคาดการณ์: ดังนั้นการคาดการณ์สำหรับปี 2000 คือ 58.17 หรือ 58,170 ไก่งวง เมื่อใช้การคาดการณ์รายปีของอุปสงค์นี้การคาดการณ์ที่ปรับฤดูกาลแล้ว SF i สำหรับปีพ. ศ. 2543 จะเปรียบเทียบการคาดการณ์รายไตรมาสเหล่านี้กับค่าความต้องการที่แท้จริงในตารางซึ่งดูเหมือนว่าจะเป็นประมาณการประมาณการที่ค่อนข้างดีซึ่งสะท้อนถึงความแตกต่างตามฤดูกาลทั้งในข้อมูลและ แนวโน้มทั่วไปขึ้น 10-12 วิธีการเฉลี่ยเคลื่อนที่แบบเดียวกับที่อธิบายได้คือ 10-11 สิ่งที่ส่งผลต่อรูปแบบการทำให้เรียบแบบเลขแจงจะเพิ่มค่าคงที่ที่ราบเรียบได้ 10-14 การปรับความเปรียบต่างที่ปรับเปลี่ยนได้มีความแตกต่างจากการให้ความนุ่มนวลแบบเลขแจง 10-15 สิ่งที่กำหนดทางเลือกของการปรับให้เรียบคงที่สำหรับแนวโน้มในแบบจำลองการปรับรูปแบบเลขแจงแบบปรับ 10-16 ในตัวอย่างบทสำหรับวิธีการแบบอนุกรมเวลาการคาดการณ์เริ่มต้นถือว่าเป็นเช่นเดียวกับความต้องการที่แท้จริงในช่วงแรก แนะนำวิธีอื่น ๆ ที่อาจมีการคาดการณ์เริ่มต้นในการใช้งานจริง 10-17 รูปแบบการคาดการณ์ของเส้นแนวโน้มแบบเส้นแตกต่างจากแบบจำลองการถดถอยเชิงเส้นสำหรับการคาดการณ์ 10-18 ของแบบจำลองชุดเวลาที่นำเสนอในบทนี้รวมทั้งค่าเฉลี่ยเคลื่อนที่และค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักการปรับให้เรียบแบบเอ็กซ์โปเนนเน่นและการปรับความเรียบที่เป็นเอกลัษณ์และเส้นแนวโน้มแบบเส้นตรงซึ่งคุณคิดว่าดีที่สุดทำไม 10-19 ข้อดีของการปรับความเปรียบเชิงเส้นทแยงมุมมีมากกว่าเส้นแนวโน้มเชิงเส้นสำหรับความต้องการที่คาดการณ์ไว้ซึ่งแสดงถึงแนวโน้ม 4 K. B. Kahn และ J. T. Mentzer การพยากรณ์ในตลาดผู้บริโภคและอุตสาหกรรมวารสารการพยากรณ์ธุรกิจ 14 ฉบับที่ 4 2 (ฤดูร้อน 1995): 21-28 ในทางปฏิบัติค่าเฉลี่ยเคลื่อนที่จะให้ค่าประมาณที่ดีของค่าเฉลี่ยของชุดข้อมูลเวลาถ้าค่าเฉลี่ยมีค่าคงที่หรือค่อยๆเปลี่ยนไป ในกรณีของค่าเฉลี่ยคงที่ค่าที่มากที่สุดของ m จะให้ค่าประมาณที่ดีที่สุดของค่าเฉลี่ยต้นแบบ ระยะสังเกตอีกต่อไปจะเป็นค่าเฉลี่ยของผลกระทบของความแปรปรวน วัตถุประสงค์ของการให้ m ที่มีขนาดเล็กคือการให้การคาดการณ์เพื่อตอบสนองต่อการเปลี่ยนแปลงในกระบวนการอ้างอิง เพื่อแสดงให้เห็นว่าเราเสนอชุดข้อมูลที่รวมการเปลี่ยนแปลงค่าเฉลี่ยที่แท้จริงของชุดข้อมูลเวลา ภาพแสดงชุดข้อมูลเวลาที่ใช้สำหรับการแสดงภาพพร้อมกับความต้องการเฉลี่ยที่สร้างขึ้น ค่าเฉลี่ยเริ่มต้นเป็นค่าคงที่ที่ 10 เริ่มต้นที่ 21 เวลาจะเพิ่มขึ้นโดยหนึ่งหน่วยในแต่ละช่วงเวลาจนกว่าจะถึงค่า 20 ในเวลา 30 จากนั้นจะกลายเป็นค่าคงที่อีกครั้ง ข้อมูลถูกจำลองโดยการเพิ่มค่าเฉลี่ยเสียงสุ่มจากการแจกแจงแบบปกติโดยมีค่าเฉลี่ยศูนย์และส่วนเบี่ยงเบนมาตรฐาน 3. ผลการจำลองจะปัดเศษเป็นจำนวนเต็มใกล้ที่สุด ตารางแสดงการสังเกตแบบจำลองที่ใช้สำหรับตัวอย่าง เมื่อเราใช้ตารางเราต้องจำไว้ว่าในเวลาใดก็ตามข้อมูลที่ผ่านมาเป็นที่รู้จักเท่านั้น การประมาณค่าพารามิเตอร์ของโมเดลสำหรับค่าที่แตกต่างกันสามค่าของ m จะแสดงพร้อมกับค่าเฉลี่ยของชุดข้อมูลเวลาในรูปด้านล่าง ตัวเลขนี้แสดงค่าประมาณเฉลี่ยเคลื่อนที่ของค่าเฉลี่ยในแต่ละครั้งและไม่ใช่การคาดการณ์ การคาดการณ์จะเปลี่ยนเส้นโค้งค่าเฉลี่ยเคลื่อนที่ไปทางขวาตามช่วงเวลา หนึ่งข้อสรุปจะเห็นได้ชัดทันทีจากรูป สำหรับทั้งสามค่าประมาณค่าเฉลี่ยเคลื่อนที่จะล่าช้ากว่าเส้นตรงโดยมีความล่าช้าเพิ่มขึ้นจาก m ความล่าช้าคือระยะห่างระหว่างรูปแบบกับการประมาณในมิติเวลา เนื่องจากความล่าช้าค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ต่ำกว่าข้อสังเกตเป็นค่าเฉลี่ยจะเพิ่มขึ้น ความลำเอียงของตัวประมาณคือความแตกต่างในเวลาที่กำหนดในค่าเฉลี่ยของแบบจำลองและค่าเฉลี่ยที่คำนวณโดยค่าเฉลี่ยเคลื่อนที่ ความอคติเมื่อค่าเฉลี่ยเพิ่มขึ้นเป็นลบ สำหรับค่าเฉลี่ยที่ลดลงอคติเป็นบวก ความล่าช้าในเวลาและอคติที่นำมาใช้ในการประมาณค่านี้เป็นหน้าที่ของ m ค่าที่มากขึ้นของ m ยิ่งใหญ่ขนาดของความล่าช้าและอคติ สำหรับซีรีส์ที่เพิ่มขึ้นอย่างต่อเนื่องโดยมีแนวโน้ม a. ค่าของความล่าช้าและความลำเอียงของ estimator ของค่าเฉลี่ยจะได้รับในสมการด้านล่าง เส้นโค้งตัวอย่างไม่ตรงกับสมการเหล่านี้เนื่องจากตัวอย่างไม่ได้เพิ่มขึ้นอย่างต่อเนื่องแทนที่จะเริ่มเป็นค่าคงที่เปลี่ยนเป็นแนวโน้มและจะกลายเป็นค่าคงที่อีกครั้ง นอกจากนี้เส้นโค้งตัวอย่างยังได้รับผลกระทบจากเสียงดัง การคาดการณ์ค่าเฉลี่ยของช่วงเวลาในอนาคตจะแสดงโดยการขยับเส้นโค้งไปทางขวา ความล่าช้าและความลำเอียงเพิ่มขึ้นตามสัดส่วน สมการด้านล่างแสดงถึงความล่าช้าและความลำเอียงของระยะเวลาคาดการณ์ในอนาคตเมื่อเทียบกับพารามิเตอร์ของโมเดล อีกครั้งสูตรเหล่านี้เป็นชุดเวลาที่มีแนวโน้มเชิงเส้นคงที่ เราไม่ควรแปลกใจที่ผลลัพธ์นี้ ตัวประมาณค่าเฉลี่ยเคลื่อนที่จะขึ้นอยู่กับสมมติฐานค่าเฉลี่ยคงที่และตัวอย่างมีแนวโน้มเป็นเส้นตรงตามค่าเฉลี่ยในช่วงระยะเวลาการศึกษา เนื่องจากชุดข้อมูลเรียลไทม์จะไม่ค่อยตรงตามสมมติฐานของรูปแบบใดก็ตามเราควรเตรียมพร้อมสำหรับผลลัพธ์ดังกล่าว นอกจากนี้เรายังสามารถสรุปจากรูปที่ความแปรปรวนของเสียงรบกวนมีผลมากที่สุดสำหรับขนาดเล็ก ค่าประมาณมีความผันผวนมากขึ้นสำหรับค่าเฉลี่ยเคลื่อนที่ที่ 5 กว่าค่าเฉลี่ยเคลื่อนที่ของ 20 เรามีความต้องการที่ขัดแย้งกันในการเพิ่ม m เพื่อลดผลกระทบของความแปรปรวนอันเนื่องมาจากเสียงและลด M เพื่อให้การคาดการณ์ตอบสนองต่อการเปลี่ยนแปลงได้มากขึ้น ในความหมาย ข้อผิดพลาดคือความแตกต่างระหว่างข้อมูลจริงกับค่าคาดการณ์ ถ้าชุดข้อมูลเวลาเป็นค่าคงที่มูลค่าที่คาดไว้ของข้อผิดพลาดจะเป็นศูนย์และความแปรปรวนของข้อผิดพลาดจะประกอบด้วยคำที่เป็นหน้าที่ของและคำที่สองซึ่งเป็นความแปรปรวนของเสียง คำที่หนึ่งคือค่าความแปรปรวนของค่าเฉลี่ยที่ประมาณด้วยตัวอย่างของการสังเกตการณ์ m สมมติว่าข้อมูลมาจากประชากรที่มีค่าเฉลี่ยคงที่ ระยะนี้จะลดลงโดยทำให้ m มีขนาดใหญ่ที่สุด m ที่มีขนาดใหญ่ทำให้การคาดการณ์ไม่ตอบสนองต่อการเปลี่ยนแปลงชุดข้อมูลอ้างอิง เพื่อให้การคาดการณ์สามารถตอบสนองต่อการเปลี่ยนแปลงได้เราต้องการให้ m มีขนาดเล็กที่สุด (1) แต่จะเพิ่มความแปรปรวนของข้อผิดพลาด การคาดการณ์ในทางปฏิบัติต้องมีค่ากลาง การคาดการณ์ด้วย Excel การคาดการณ์ add-in จะใช้สูตรค่าเฉลี่ยเคลื่อนที่ ตัวอย่างด้านล่างแสดงการวิเคราะห์โดย add-in สำหรับข้อมูลตัวอย่างในคอลัมน์ B 10 ข้อสังเกตแรกมีการจัดทำดัชนี -9 ถึง 0 เมื่อเทียบกับตารางด้านบนดัชนีระยะเวลาจะเปลี่ยนไป -10 การสังเกตสิบข้อแรกให้ค่าเริ่มต้นสำหรับการประมาณและใช้คำนวณค่าเฉลี่ยเคลื่อนที่สำหรับช่วงเวลา 0 คอลัมน์ MA (10) (C) แสดงค่าเฉลี่ยเคลื่อนที่ที่คำนวณได้ ค่าเฉลี่ยเคลื่อนที่ m อยู่ในเซลล์ C3 คอลัมน์ Fore (1) (D) จะแสดงการคาดการณ์สำหรับระยะเวลาหนึ่งในอนาคต ช่วงคาดการณ์อยู่ในเซลล์ D3 เมื่อช่วงคาดการณ์มีการเปลี่ยนแปลงไปเป็นจำนวนที่มากขึ้นตัวเลขในคอลัมน์ Fore จะถูกเลื่อนลง คอลัมน์ Err (1) (E) แสดงความแตกต่างระหว่างการสังเกตและการคาดการณ์ ตัวอย่างเช่นการสังเกตในเวลาที่ 1 คือ 6 ค่าที่คาดการณ์ไว้จากค่าเฉลี่ยเคลื่อนที่ในช่วงเวลา 0 คือ 11.1 ข้อผิดพลาดคือ -5.1 ค่าเบี่ยงเบนมาตรฐานและค่าเฉลี่ยส่วนเบี่ยงเบนเฉลี่ย (MAD) คำนวณในเซลล์ E6 และ E7 ตามลำดับการพยากรณ์ด้วยการวิเคราะห์อนุกรมเวลาการคาดการณ์พยากรณ์คือวิธีการที่ใช้อย่างกว้างขวางในการวิเคราะห์อนุกรมเวลาเพื่อทำนายตัวแปรการตอบสนองเช่นผลกำไรรายเดือน, หุ้นหรือตัวเลขการว่างงานในช่วงระยะเวลาหนึ่ง การคาดการณ์จะขึ้นอยู่กับรูปแบบในข้อมูลที่มีอยู่ ตัวอย่างเช่นผู้จัดการคลังสินค้าสามารถกำหนดรูปแบบการสั่งซื้อผลิตภัณฑ์สำหรับ 3 เดือนถัดไปตามใบสั่งซื้อ 12 เดือนก่อนหน้า คุณสามารถใช้วิธีการต่างๆของชุดข้อมูลตามเวลาเช่นการวิเคราะห์แนวโน้มการสลายตัวหรือการเรียบแบบเลขแจงเดียวเพื่อสร้างโมเดลในข้อมูลและคาดการณ์รูปแบบเหล่านั้นในอนาคต เลือกวิธีการวิเคราะห์โดยพิจารณาว่ารูปแบบเป็นแบบคงที่ (คงที่ตลอดช่วงเวลา) หรือแบบไดนามิก (เปลี่ยนตามเวลา) ลักษณะของแนวโน้มและองค์ประกอบตามฤดูกาลและระยะทางที่คุณต้องการคาดการณ์ล่วงหน้า ก่อนที่จะสร้างการคาดการณ์ให้พอดีกับโมเดลผู้สมัครหลาย ๆ ข้อมูลเพื่อหารูปแบบที่มีความเสถียรและถูกต้องที่สุด การคาดการณ์สำหรับการวิเคราะห์ค่าเฉลี่ยเคลื่อนที่ค่าที่ติดตั้งในเวลา t คือค่าเฉลี่ยเคลื่อนที่ที่ไม่มีการป้อน ณ เวลา t -1 การคาดการณ์คือค่าที่พอดีกับต้นกำเนิดของการคาดการณ์ หากคุณคาดการณ์หน่วยเวลา 10 หน่วยข้างหน้าค่าที่คาดการณ์ไว้สำหรับแต่ละครั้งจะเป็นค่าติดตั้งที่จุดเริ่มต้น ข้อมูลขึ้นต้นทางใช้สำหรับคำนวณค่าเฉลี่ยเคลื่อนที่ที่เคลื่อนที่ คุณสามารถใช้วิธีคำนวณค่าเฉลี่ยเคลื่อนที่โดยการคำนวณค่าเฉลี่ยเคลื่อนที่ต่อเนื่อง มักใช้เมื่อมีแนวโน้มในข้อมูล ขั้นแรกคำนวณและเก็บค่าเฉลี่ยเคลื่อนที่ของชุดต้นฉบับ จากนั้นคำนวณและเก็บค่าเฉลี่ยเคลื่อนที่ของคอลัมน์ที่เก็บไว้ก่อนหน้านี้เพื่อให้ได้ค่าเฉลี่ยเคลื่อนที่ที่สอง ในการคาดเดาไร้เดียงสาการคาดการณ์เวลา t คือค่าข้อมูล ณ เวลา t -1 การใช้ขั้นตอนเฉลี่ยเคลื่อนที่โดยมีค่าเฉลี่ยเคลื่อนที่ของความยาวหนึ่งให้การคาดการณ์แบบไร้เดียงสา ค่าที่ติดตั้งในเวลา t คือค่าที่ราบเรียบในเวลา t-1 การคาดการณ์คือค่าติดตั้งที่จุดเริ่มต้นคาดการณ์ หากคุณคาดการณ์หน่วยเวลา 10 หน่วยข้างหน้าค่าที่คาดการณ์ไว้สำหรับแต่ละครั้งจะเป็นค่าติดตั้งที่จุดเริ่มต้น ใช้ข้อมูลถึงจุดเริ่มต้นในการทำให้เรียบ ในการคาดการณ์แบบไร้เดียงสาการคาดการณ์ของเวลา t คือค่าข้อมูล ณ เวลา t-1 ทำเรียบเรียงชี้แจงเพียงครั้งเดียวพร้อมน้ำหนักหนึ่งอันเพื่อทำนายแบบไร้เดียงสา การคาดการณ์สำหรับการวิเคราะห์การเอ็กซ์เพลนอร์นแบบทวีคูณแบบทวีคูณคู่ใช้องค์ประกอบระดับและแนวโน้มในการสร้างการคาดการณ์ การคาดการณ์สำหรับ m ช่วงเวลาล่วงหน้าจากจุด ณ เวลา t คือ L t mT t โดยที่ L t เป็นระดับและ T t เป็นแนวโน้มที่เวลา t ข้อมูลจะใช้สำหรับการทำให้เรียบ การคาดการณ์สำหรับ Winters วิธี Winters ใช้องค์ประกอบระดับเทรนด์และตามฤดูกาลเพื่อสร้างการคาดการณ์ การคาดการณ์สำหรับ m ช่วงเวลาล่วงหน้าจากจุด ณ เวลา t คือที่ L t คือระดับและ T t เป็นแนวโน้มในเวลา t คูณด้วย (หรือเพิ่มสำหรับแบบจำลอง additive) องค์ประกอบตามฤดูกาลในช่วงเวลาเดียวกันจาก ปีก่อน. Winters Method ใช้ข้อมูลถึงเวลาที่คาดการณ์ไว้เพื่อสร้างการคาดการณ์

No comments:

Post a Comment